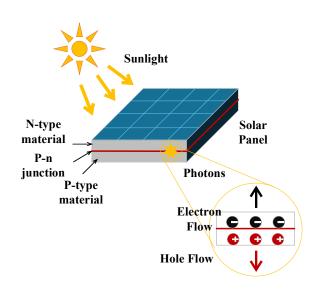
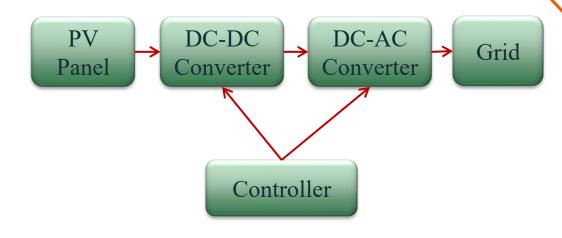


Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

Lwena Delgado, Shanghai University

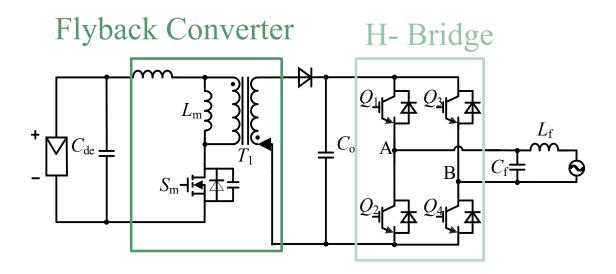

Contents


01	02	03	
Introduction	Flyback Topology	DBCM Method for Flyback Microinverter	

04 05 06
Contribution Experimental Conclusion Results

01 Introduction

Introduction



A microinverter is a key component that converts DC from PV panels into AC for grid or local use

pcim

02 Flyback Topology

Flyback Microinverter

The flyback inverter is particularly advantageous when combined with an H-bridge for grid-tied applications.

03 DBCM Method

For Flyback Microinverter

Operation Modes of Flyback Microinverter

Discontinuous Conduction Mode (DCM)

Boundary Conduction Mode (BCM)

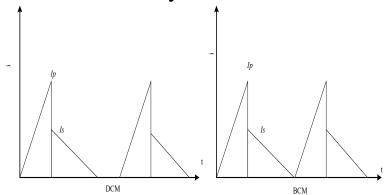
Discontinuous Conduction Mode (CCM)

Operation Modes of Flyback Microinverter

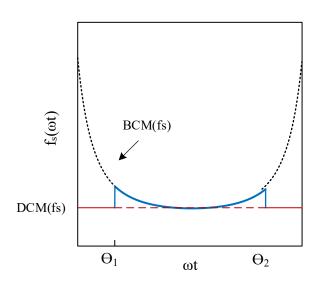
Discontinuous
Conduction
Mode (DCM)

Boundary Conduction Mode (BCM)

Discontinuous Boundary Conduction Mode (BCM)


DBCM Method for Flyback Microinverter

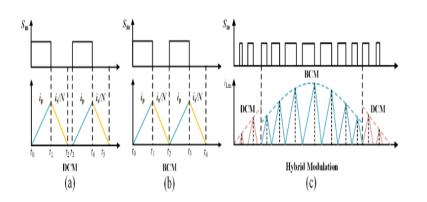
Conduction Mode	Advantages	Disadvantages
DCM (Discontinuous Conduction Mode)	 Simple control Zero current at turnon No need for current feedback loop 	 Higher peak and RMS currents Limited power throughout for given magnetics. Moderate efficiency at heavy loads
BCM (Boundary Conduction Mode)	 Improved magnetic utilization Lower peak current for same output Higher power density 	 Variable switching frequency complicates EMI filtering and control. Extremely high switching frequency at light load


DBCM Method for Flyback Microinverter

Ip – Primary Current

Is - Secondary Current

Current waveforms of the primary and secondary sides in DCM and BCM


Graph of fixed switching frequency

04 Contribution

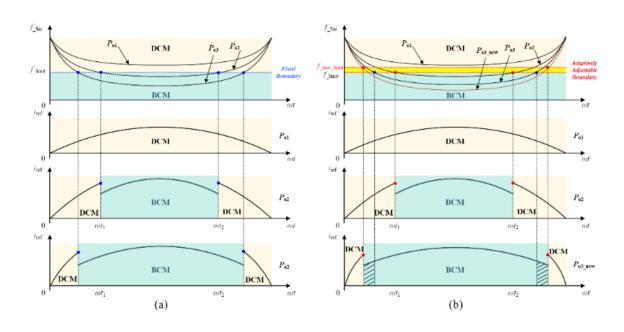
Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

Contribution-Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

$$f_{\text{limit}} = f_{\text{base}} + kP_{\text{O}}, k > 0$$

Hybrid Principle

Proposed Adaptive Boundary Equation



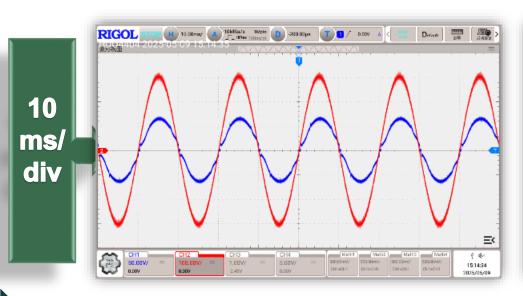
Contribution-Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

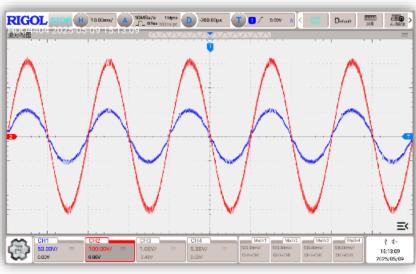
Instantaneous Power P(t)	Switching Frequency fs	Suggested mode
0-20W	200-450Khz	DCM
20-80W	150-300Khz	BCM (adaptative)
80-100W	130-180Khz	BCM

Contribution-Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

Proposed Waveforms

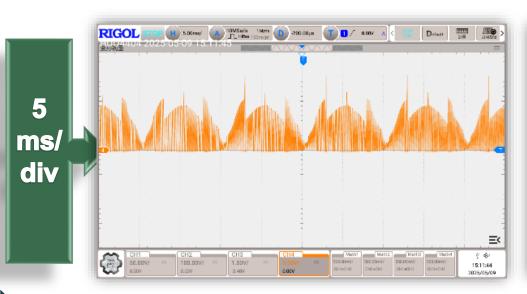
05


Experimental Results



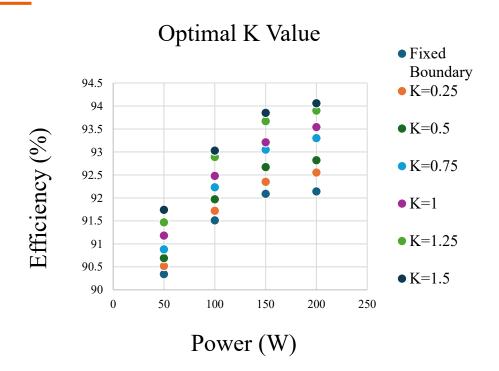
- \rightarrow Vin (PV) = 25.45V
- > Po = 200 W
- > MOSFET =
 S_freq=500KHz
- Transformer turn ratio(N) 1:10
- > F_base=100Khz
- > K=0.15

Proposed Prototype





Waveforms of Grid voltage and output current a) at 200 W b) at 160 W



Waveforms of Grid voltage and output current a) at 200 W b) at 160 W

The optimal value of k was found to be 0.15, which offers the best balance between high efficiency and manageable thermal rise.

06Conclusion

Future Directions

Digital Implementation

Hybrid Power Stages

Battery-PV Hybrid Systems

Smart Grid Integration

Conclusion

The proposed system paves the way for more efficient, flexible, and scalable solutions in the field of PV micro-inverters, with promising implications for higher power applications, energy storage integration, and smart grid systems

Thank you for your attention!

Q & A