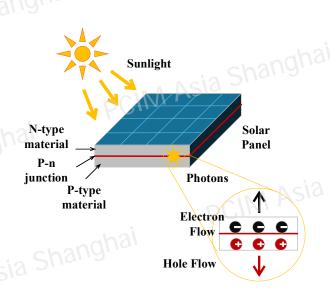
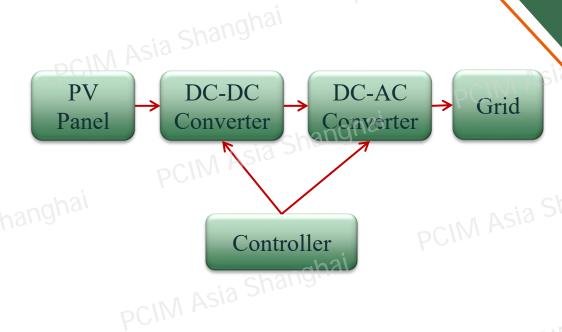


Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

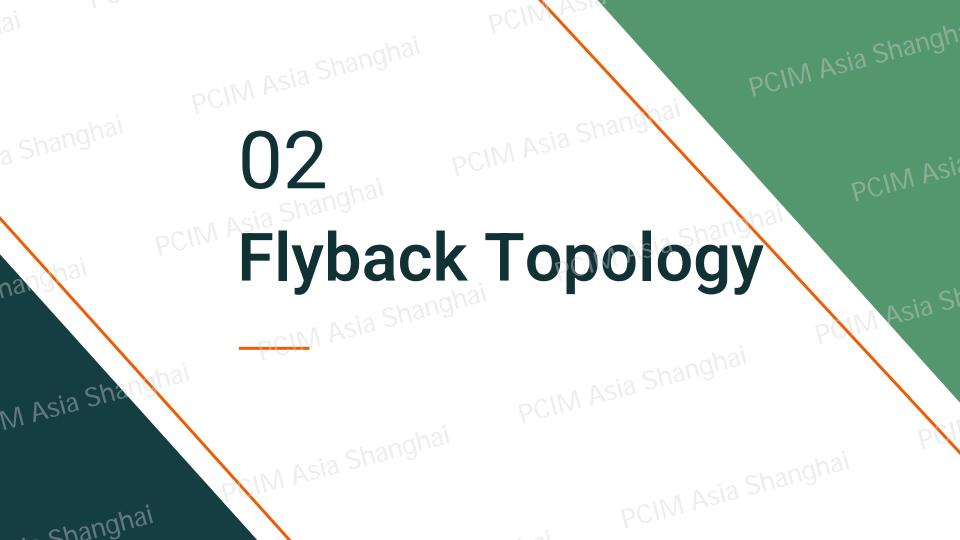
Lwena Delgado, Shanghai University

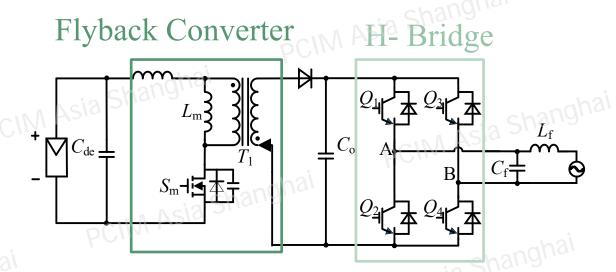
Contents


01 02 03
Introduction Flyback Topology DBCM Method for Flyback Microinverter


Asia Shangh

04 05 06
Contribution Experimental Conclusion Results


Introduction



PCIM Asia shangi

A microinverter is a key component that converts DC from PV panels into AC for grid or local use

Flyback Microinverter

PCIM Asia Sha

The flyback inverter is particularly advantageous when combined with an H-bridge for grid-tied applications.

PCIM Asia Shang 03 DBCM Method shan PCIM Asia Shanghai For Flyback Microinverter M Asia Shall KIM Asia Shanghai changhai

Operation Modes of Flyback Microinverter

Discontinuous Conduction

Mode (DCM)

Boundary Conduction

Mode (BCM)

Discontinuous Conduction

Mode (CCM)

Asia Shanging

M Asia Shanghai

Operation Modes of Flyback Microinverter

Discontinuous

Conduction

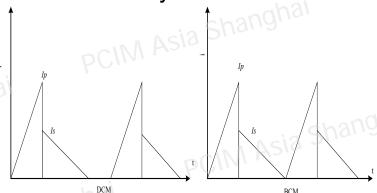
Mode (DCM)

M Asia Shanghai

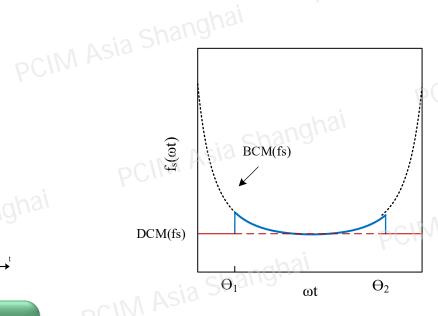
PCIM Asia Shang

Boundary Conduction Mode (BCM)

Discontinuous Boundary
Conduction Mode (BCM)


DBCM Method for Flyback Microinverter

Conduction Mode	Advantages PCIM ASIA	Disadvantages
DCM (Discontinuous Conduction Mode)	 Simple control Zero current at turnon No need for current feedback loop 	 Higher peak and RMS currents Limited power throughout for given magnetics. Moderate efficiency at heavy loads
BCM (Boundary Conduction Mode)	☐ Improved magnetic utilization ☐ Lower peak current for same output ☐ Higher power density	 □ Variable switching frequency complicates EMI filtering and control. □ Extremely high switching frequency at light load


DBCM Method for Flyback Microinverter

lp – Primary Current

Is – Secondary Current

Current waveforms of the primary and secondary sides in DCM and BCM

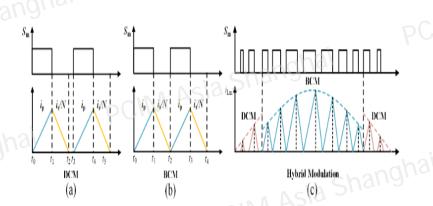
Graph of fixed switching frequency

PCIM Asia Shar

PCIM Asia Shangi

04 PCIM Asia Shanghai

Contribution Asia Shan


Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

PCIM Asia Shang

M Asia Sha

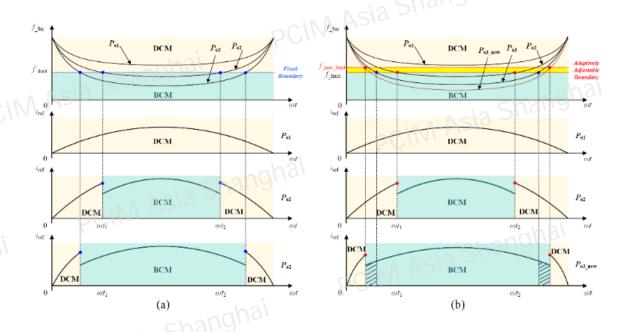
shanghai

Contribution-Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

$$f_{\text{limit}} = f_{\text{base}} + kP_{\text{O}}, k > 0$$

Hybrid Principle

PCIM Asia Shanghai


Proposed Adaptive Boundary Equation

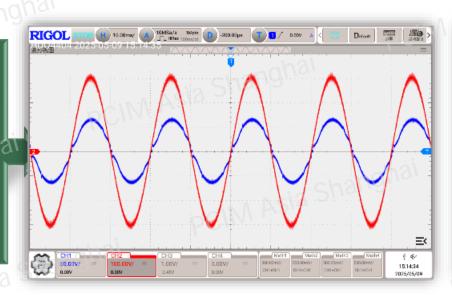
Contribution-Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

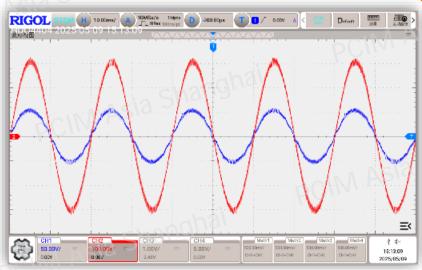
	Power P(t)	- anghal	Suggested mode shanghai	PCIM Asi
	0-20W	200-450Khz	\square CM	
n Asia St	20-80W po	CIM ASI950-300Khz PCIM	BCM (adaptative)	PCIM Asia S
	80-100W	130-180Khz	BCM	ghai PCI

Contribution-Adaptive Switching Frequency Boundary in Hybrid DCM and BCM Method for Flyback Microinverter

 \rightarrow Vin (PV) = 25.45V

1 Asia Shan

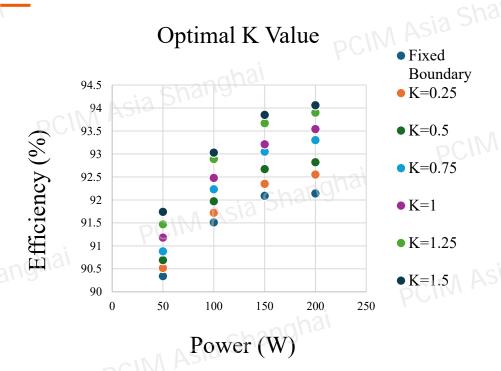

- > Po = 200 W
- > MOSFET =
 S_freq=500KHz
- Transformer turn ratio(N) 1:10
- > F_base=100Khz
- > K=0.15


Proposed Prototype

10


ms/ div

PCIM Asia Shangh


Waveforms of Grid voltage and output current a a) at 200 W b) at 160 W

PCIM Asia Shangh

Waveforms of Grid voltage and output current at a share a) at 200 W b) at 160 W

The optimal value of k was found to be 0.15, which offers the best balance between high efficiency and manageable thermal rise.

Future Directions

Digital Implementation

Hybrid Power Stages

Battery-PV Hybrid Systems

PCIM Asia Shangh

Smart Grid Integration

Conclusion, Asia Shanghai

The proposed system paves the way for more efficient, flexible, and scalable solutions in the field of PV micro-inverters, with promising implications for higher power applications, energy storage integration, and smart grid systems

PCIM Asia Shanghai

PCIM Asia Shangh

Q & Acim Asia Shanghai
PCIM Asia Shanghai PCIM Asia Shanghai