

Full SiC SLIMDIP for High Efficiency Applications

Principal author: Kazuki Takakura¹

Co-author: Yuki Terado¹, Yuya Omagari¹, Toma Takao¹

Akiko Goto¹, Koichiro Noguchi¹

Kai Jiang², XiaoLing Wang²

¹ Mitsubishi Electric Corporation, Japan

² Mitsubishi Electric & Electronics (Shanghai) Co., Ltd, China

Outline DCIMA Asia Shanghai

- Asia Shangna 1. Background
 - 2. Development Concept
 - 3. Features of Full SiC SLIMDIP
 - 4. Electrical Characteristics
 - 5. Comparison of SLIMDIP Series
 - 6. Summary

1. Background

- CIM Asia Shanghai 2. Development Concept
- PCIM 3. Features of Full SiC SLIMDIP
 - 4. Electrical Characteristics
- 5. Comparison of SLIMDIP Series
 - 6. Summary

A Asia Shanghai

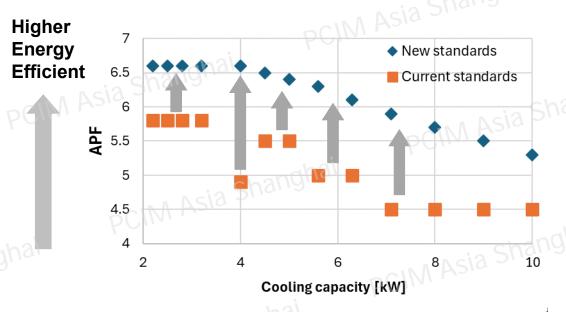
Background

Energy saving standards are being applied worldwide for almost all appliance. e.g., A/C systems must review all components to achieve new energy saving standard.

Energy saving in worldwide

Energy Saving Standards is already fixed widely

MEPS: Minimum Energy Performance Standards (e.g. Energy Label, Energy Stars, ...)


Key message • Most of the major cooling markets today have mandatory MEPS, although the required efficiency levels are typically far below those of the most efficient products available.

New APF standard for A/C in Japan of

Japan targets a 35% APF* improvement by 2027.

*APF: Annual Performance Factor

$$APF = \frac{Annual\ air\ conditioning\ energy}{Annual\ power\ consumption}$$

Background 2.Development Concept

- PCIM 3. Features of Full SiC SLIMDIP
 - 4. Electrical Characteristics
- 5. Comparison of SLIMDIP Series
 - 6. Summary

A Asia Shanghai

Development Concept

Full SiC SLIMDIP aims to reduce losses with SiC MOSFET.

It also contributes to the expansion of the application range of SLIMDIP package.

Concept

- Loss reduction with SiC MOSFET
- Enhancing device selection flexibility by adding Full SiC types to conventional Si products.

ASIA SI SLIMDIP vs Full SiC SLIMDIP

		40 14310	
	Si SLIMDIP	Full SiC SLIMDIP	
Chip	Si RC-IGBT	SIC MOSFET	
Rating	600V / 5~30A	600V / 15A	
VD	15V PC	M Asia +	
Tj	-30~150℃	←	
PCIM ASI		PCIM Asia Sh	
Package		bcTIM.	
	18.8×32	.8mm	

In recent years, the SLIMDIP package has become mainstream in the consumer market.

By adding SiC to the SLIMDIP package, we are expanding the application range of the SLIMDIP series.

A Asia Shanghai

2. Development Concept 3. Features of Full SiC SLIMDIP

- 4. Electrical Characteristics
- 5. Comparison of SLIMDIP Series
 - 6. Summary

Features of Full SiC SLIMDIP

VD, protection functions and pin arrangement are same as conventional Si product. Easily replaceable with conventional Si products.

⁹ Features

- VD is same as conventional Si product.
 By adjusted for VGS(Vth), allowing for 15V power supply
- 2. The protection functions and pin arrangement are also compatible with the conventional SLIMDIP.

Easily replaceable with conventional Si products.

_N As ^{ia} Si'SL	IMDIP vs Full Si	C SLIMDIR hangh
	Si SLIMDIP	Full SiC SLIMDIP
Chip	Si RC-IGBT	SiC MOSFET
Rating	600V / 5~30A	600V / 15A
VD	15V pC\	M Asia +
Protection Functions	UV, SC, OT, VOT	←
PCIIVI Tj	-30~150℃	PCM Asia St
Package	18.8×32	← .8mm

A Asia Shanghai

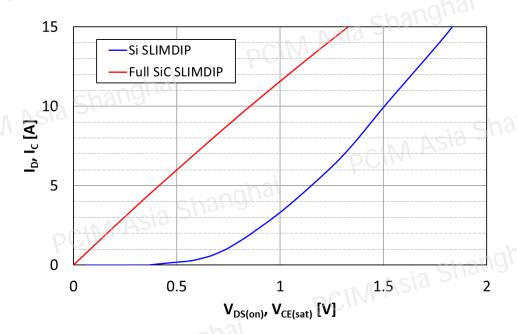
2. Development Concept

PCIM A3: Features of Full SiC SLIMDIP

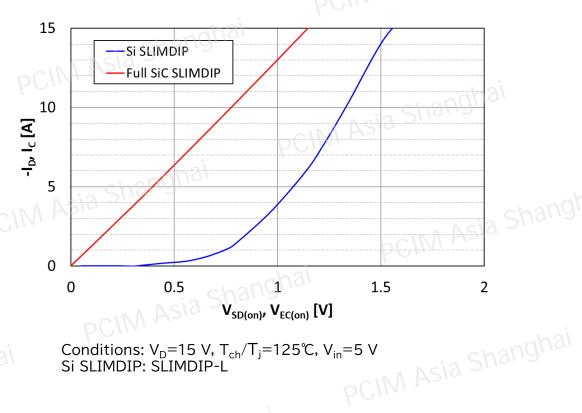
4. Electrical Characteristics

5. Comparison of SLIMDIP Series

6. Summary


Static Characteristics

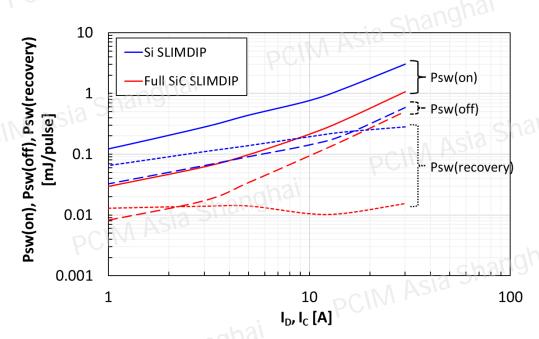
The static characteristics of Full SiC SLIMDIP are improved over the entire range compared to Si SLIMDIP.

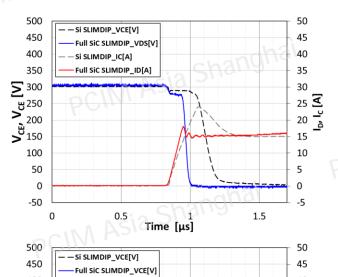

ShaVDS(on), VCE(sat)

Conditions: $V_D=15~V, T_{ch}/T_j=125^{\circ}C, V_{in}=5~V$ Si SLIMDIP: SLIMDIP-L

VSD(on), VEC(on)

A Asia Shangha


Conditions: $V_D=15 \text{ V}$, $T_{ch}/T_i=125^{\circ}\text{C}$, $V_{in}=5 \text{ V}$ Si SLIMDIP: SLIMDIP-L


Full SiC SLIMDIP has smaller recovery current, turn-on loss, and recovery loss compared to Si SLIMDIP.

Psw(on), Psw(off) and Psw(recovery)

Conditions: $V_{DD}/V_{CC}=300$ V, $V_D=15$ V, $V_{IN}=0 \Leftrightarrow 5$ V, Inductive Load, $T_{ch}/T_j=125^{\circ}C$

SW waveforms

Time [us]

 $\mathbf{\Sigma}^{300}$

100

Turn-on at 15A

Full SiC SLIMDIP exhibits smaller recovery current, turn-on loss, and recovery loss compared to the Si SLIMDIP

1.5

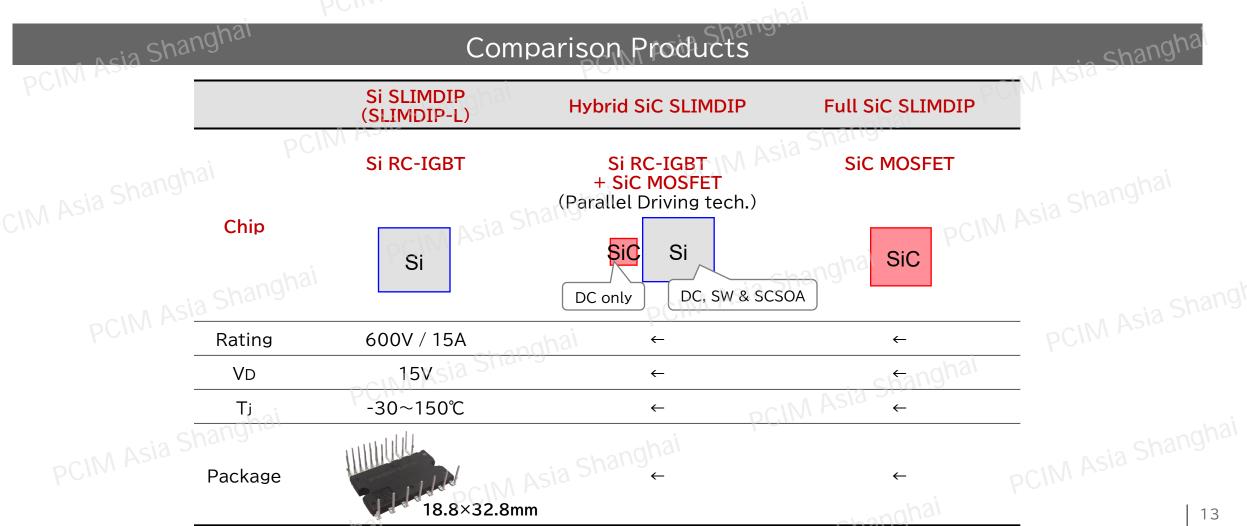
Conditions: $V_{DD}/V_{CC}=300 \text{ V}, V_D=15 \text{ V}, V_{IN}=0 \Leftrightarrow 5 \text{ V}, I_C=15 \text{ A}, Inductive Load, } T_{ch}/T_j=125^{\circ}C \text{ Si SLIMDIP: SLIMDIP-L}$

A Asia Shanghai

- 2. Development Concept PCIM A312 Features of Full SiC SLIMDIP
 - 4. Electrical Characteristics

5. Comparison of SLIMDIP Series CIM Asia Shanghai PCIM Asia Shanghai

6. Summary


Comparison Products

Performance comparison will be conducted within the SLIMDIP series.

Hybrid SiC SLIMDIP is a product that parallel connects SiC MOSFET and Si RC-IGBT.

Loss Ratio Comparison



Hybrid SiC SLIMDIP is effective in reducing losses in low current regions.

Full SiC SLIMDIP is expected to significantly reduce losses across all current regions.

Hybrid SiC SLIMDIP

- Hybrid SiC SLIMDIP demonstrates more than a 30% improvement in low current region.
- However, as the current increases, the improvement rate compared to Si SLIMDIP tends to decrease.

Full SiC SLIMDIP

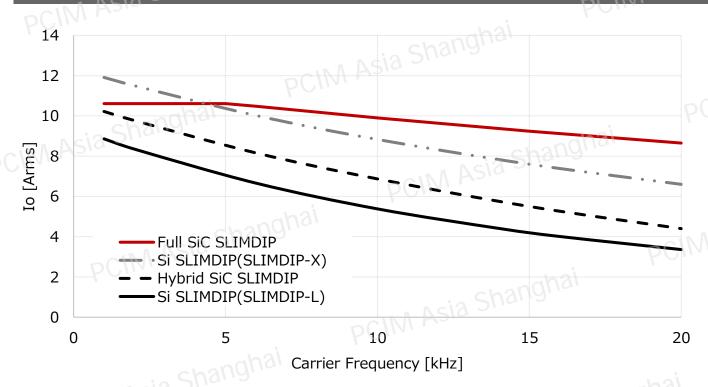
 Full SiC SLIMDIP is expected to achieve 60% or more loss improvement compared to Si SLIMDIP across the entire current range

Conditions: Sinusoidal, $V_{DD}/V_{CC}=300 \text{ V}$, $V_D=15 \text{ V}$, fc=5 kHz, PF=0.8, M=1, $T_{ch}/T_j=125^{\circ}\text{C}$

Si SLIMDIP: SLIMDIP-L

(note) The loss ratios of the Hybrid SiC SLIMDIP and Full SiC SLIMDIP when the losses of the SLIMDIP-L are set to 100%

Current dependence on carrier frequency



DIPIPM is used in a wide range of application, such as A/C, W/M, Fan and so on.

Fc varies up to 20 kHz, but Full SiC SLIMDIP demonstrates high performance.

(note)A/C: Air conditioner, W/M: Washing Machine, Fc: Carrier Frequency

Effective Current-Carrier Frequency Characteristics

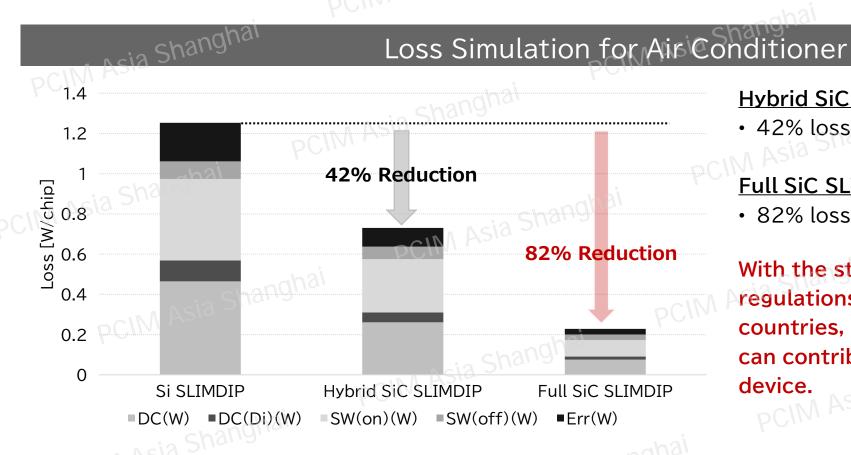
Hybrid SiC SLIMDIP

 Hybrid SiC SLIMDIP ensures a higher allowable current compared to SLIMDIP-L.

Full SiC SLIMDIP

 Full SiC SLIMDIP ensures a higher allowable current compared to other products.

Conditions: Sinusoidal, $V_{DD}/V_{CC}=300 \text{ V}$, $V_D=15 \text{ V}$, PF=0.8, M=1, $T_{ch}/T_j=125^{\circ}\text{C}$, $T_f=100^{\circ}\text{C}$, $R_{th(c-f)}=0.3\text{K/W}(1/6 \text{ module})$, $R_{th(j-c)}=\text{Max value}(1/6 \text{ module})$ Si SLIMDIP: SLIMDIP-L


(note) The characteristics in Figure represent the allowable effective current value Io, where the average operating junction temperature Tj of the power chip remains below 125°C for safe operation when the inverter operates with a heatsink temperature T_f of 100°C.

Loss Simulation Results for Air Conditioner

With the strengthening of energy-saving regulations for air conditioners in various countries. Full SiC SLIMDIP can contribute to loss reduction as a low-loss device.

Hybrid SiC SLIMDIP

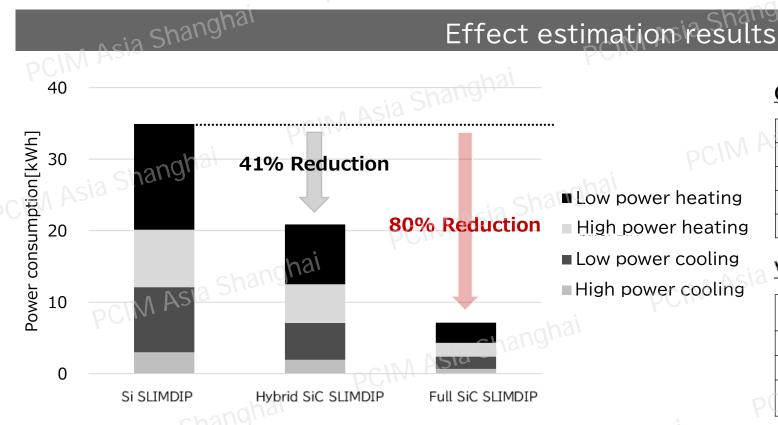
42% loss reduction compared to SLIMDIP-L.

Full SiC SLIMDIP

82% loss reduction compared to SLIMDIP-L.

With the strengthening of energy-saving regulations for air conditioners in various countries, including Japan, Full SiC SLIMDIP can contribute to loss reduction as a low-loss device.

Conditions: Sinusoidal, $V_{DD}/V_{CC}=300 \text{ V}$, $I_{O}=1.5 \text{ Arms}$, $V_{D}=15 \text{ V}$, fc=5 kHz, PF=0.8, M=1, $T_{ch}/T_{i}=125^{\circ}$ C


Si SLIMDIP: SLIMDIP-L

Effect Estimation on APF for Air Conditioners

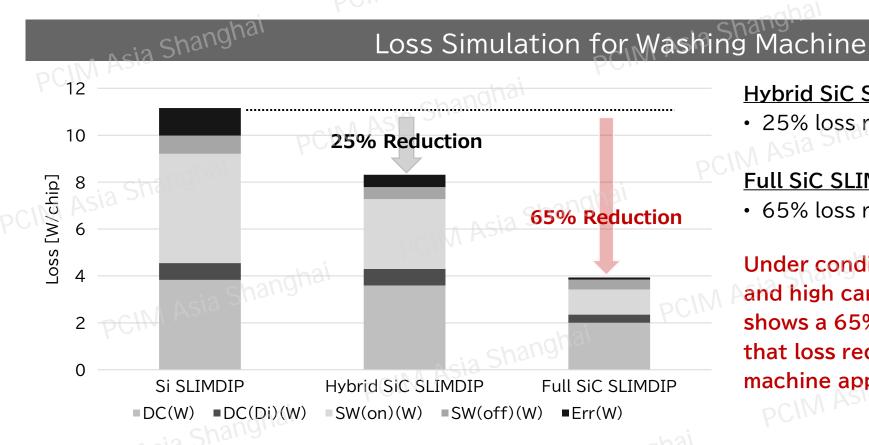
Hybrid and Full SiC SLIMDIP will reduce 41% and 80% annual power consumption in the inverter circuit of an air conditioner compressor

Common condition

Modulation	Sinusoidal	
Carrier frequency fc [kHz]	5	
Output frequency fo [Hz]	ch2160	
Power Factor P.F.	0.8	
Modulation M	1	

Voltage and current

	High power cooling	Low power cooling	High power heating	Low power heating
Vcc[V]	300	300	300	300
Io [Arms]	2.5	1.5	3	1.5
Operation time [hr/year]	261.5	1307.5	580.1	2126.9
	6	PCIN	n Asia S	,hangha


Conditions: Refer to Table. Si SLIMDIP: SLIMDIP-L

Loss Simulation Results for Washing Machine

Even under conditions of relatively large current and high carrier frequency, Full SiC SLIMDIP can contribute to loss reduction as a low-loss device.

Hybrid SiC SLIMDIP

25% loss reduction compared to SLIMDIP-L.

Full SiC SLIMDIP

65% loss reduction compared to SLIMDIP-L.

Under conditions of relatively large current and high carrier frequency, Full SiC SLIMDIP shows a 65% loss improvement. This indicates that loss reduction is also possible in washing machine applications.

Conditions: $V_{DD}/V_{CC}=300 \text{ V}$, $I_0=7.5 \text{ Arms}$, $V_D=15 \text{ V}$, fc=15 kHz, PF=0.8, M=1, $T_{cb}/T_i=125^{\circ}$ C

Si SLIMDIP: SLIMDIP-L

- A Asia Shanghai

 - 2. Development Concept PCIM A312 Features of Full SiC SLIMDIP
 - 4. Electrical Characteristics
 - 5. Comparison of SLIMDIP Series
 - 6.Summary

Summary

Full SiC SLIMDIP, as a low-loss device, will broadly contribute to the efficiency improvement of various applications.

Key Points

- (1)Package, pin arrangement, VD and protection functions are the same as SLIMDIP.
- (2) Easy to replace conventional Si products.
- (3)Loss reduction is possible in various applications.

Reference Information

Mitsubishi Electric to Ship Full-SiC and Hybrid-SiC SLIMDIP Samples.

News release: "Mitsubishi Electric to Ship Full-SiC and Hybrid-SiC SLIMDIP Samples" on April 15, 2025.

Mitsubishi Electric to Ship Full-SiC and Hybrid-SiC SLIMDIP Samples

