

Practically achievable WLTC loss improvements for the Si/SiC hybrid switch approach in a 400 V automotive traction inverter application – A retrofitting case study

Hariprasad Baburajan, Alexander Bucher, Christian Hasenohr, Alexander Rambetius, Mohadeseh Jahani, Sabarinadh Pamarathi

This project has been financed by the French public authorities within the framework of France 2030 & the "Important Project of Common European Interest (IPCEI)"

Co-funded by the European Union

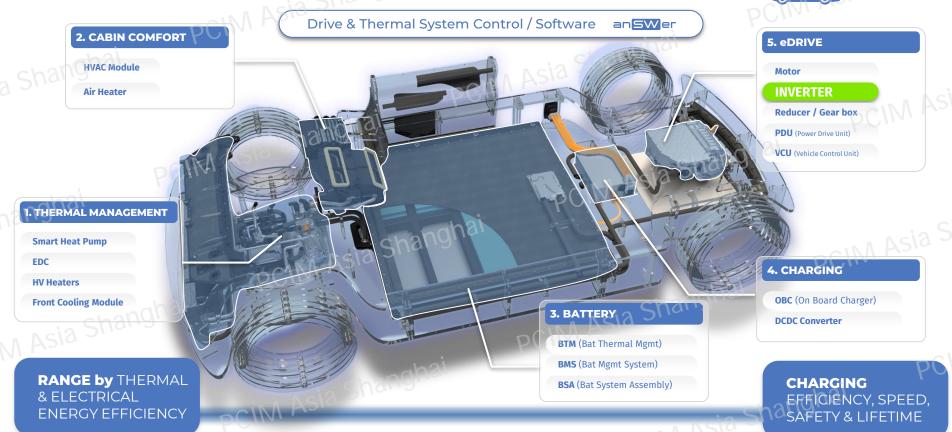
PCIM Asia Shanging

a Snarry PCIM Asia Shanghai

VALEO POWER a Shanghi

United for innovation, we power the future of mobility and beyond

Asia Shanghai


PCIM A ASIA SHANGHAI Sia Shanghai


changha

POWERTRAIN & THERMAL SYSTEM FUSION FOR COST & EFFICIENCY = 6 4

Figures as at December 31st, 2024 *R&D = Research & Development Centers PCIM Asia Shangi is

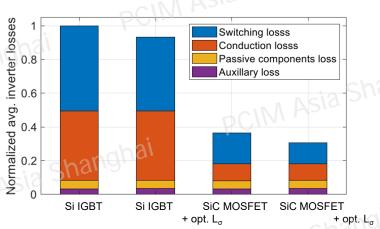
a Snariyi -a Snariyi -a Snariyi -a Shariyi -a Shariyi -a Shariyi --

HYBRID SWITCHshangha

Introduction & scope M Asia Shanghai

. Acia Shanghal

ociM Asia Snars


Introduction

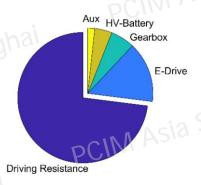
State of the art

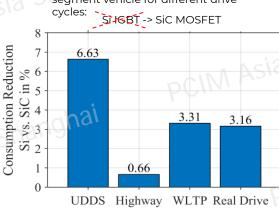
SIC as the new PCOLD STANDARD

Typically SiC MOSFETs reduce inverter losses by ~60 ... 70 %

Exemplary WLTC inverter loss distribution for a c segment vehicle

Source: A. Rambetius et al., "Efficiency Trends for Electric Traction Drives", 32nd Aachen Colloquium Sustainable Mobility, 2023




System BENEFITS

Even though impact of SiC upgrade on power electronics is huge, inverter losses are weighted with losses from other components

Exemplary WLTC drivetrain loss distribution for a c segment vehicle:

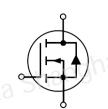
Exemplary WLTC vehicle consumption reduction of a d segment vehicle for different drive

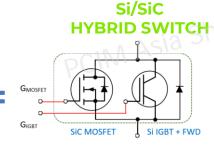
Source: A. Nisch et al., "Simulation and Measurement-Based Analysis of Efficiency Improvement of SiC MOSFETs in a Series-Production Ready 300 kW / 400 V Automotive Traction Inverter", 22nd European Conference on Power Electronics and Applications, 2020

VALEO RESERVED 2025 | 7

Scope

Si/SiC hybrid switch retrofitting




Si IGBT & FWD

SIC MOSFET

Bipolar devices

- + high ampacity
- slow/lossy switching
- stored charges
- part-load voltage drop
- + EMI-friendly

Area/cost ratio

- + cost-effective
- large footprint

Unipolar device

- medium ampacity
- + fast/efficient switching
- + negligible charges
- resistive voltage drop
- pronounced ringing

Area/cost ratio

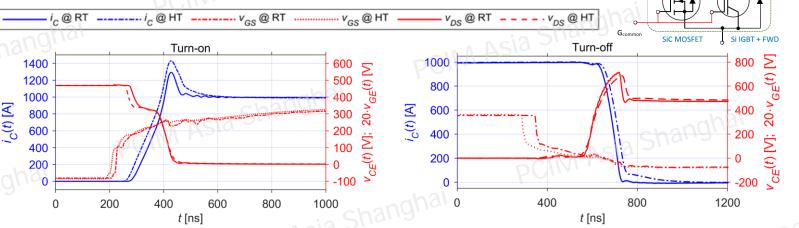
- pricey
- + small footprint

Practically achievable PERFORMANCE?

- Retrofit implementation in series-production automotive traction inverter 400 V / 150 kW
- Realistic switching speeds
- WLTC usage
- Thermal equilibrium
- Benchmarking vs. full Si and full SiC

a Shanghai Asia Shanghai

Characterization & simulation


HYBRID SWITCHshangh sia Shanghai

Dynamic characterization

Switching performance common gate

Double-pulse test conditions:

 $V_{dc} = 470 \text{ V}$ $I_1 = 1000 A$ T_{vi} = 25 °C (RT) $T_{vi} = 175 \,^{\circ}\text{C} \text{ (HT)}$

Switching performance COMMON gate

- Clean switching waveforms
- Coverage of full dynamic load range
- Very good harmony btw. dyn characteristics of different devices mandatory
- Switching loss reduction < 50 % vs. full SiC

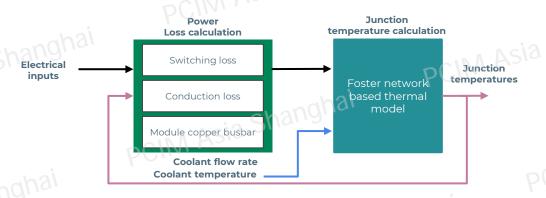
E_{sw,tot} [a. u.] 8.0 9.0 8.0 7.0 8.0 8.0 600 700 800 900 200 300 500

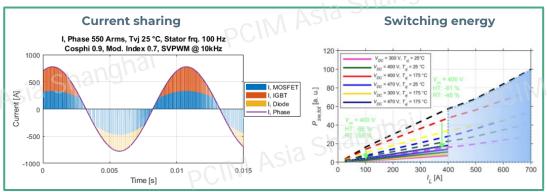
Si/SiC Hybrid switch

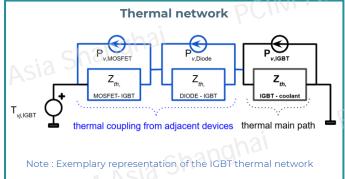
Si IGBT SIC MOSFET

 $T_{vj} = 25 \,^{\circ}\text{C} \, \& \, V_{dc} = 400 \,^{\circ}\text{V}$

Simulation model


IPCEI Microelectronics and Communication Technologies

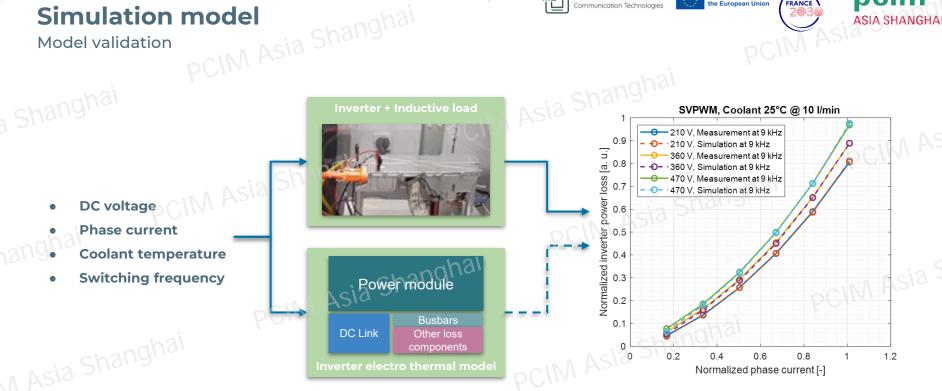

Power module model description Shangha


Myanced model for hybrid simulation of:

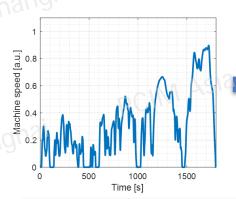
- Semiconductor power loss
- Individual junction temperature

Power loss calculation

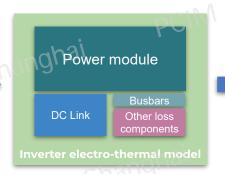
Junction temperature calculation


Simulation model

Model validation

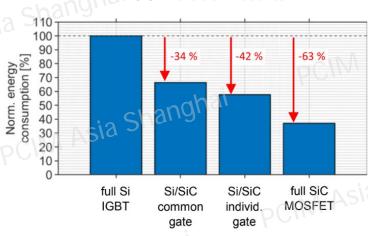

The comparison reveals evacuement agreement between measurements and simulations.

CIM Asia Shangha. **WLTC** simulation


Class C/D vehicle

for class C/D vehicle

Simulation


Si/SiC hybrid switch brings about 54% of Neduction in energy consumption achievable with SiC MOSFET power module Asia Shanghai with common gate control.

WLTC Simulation results

Boundary conditions

DC voltage :360 V

Modulation : SVPWM @ 10

kH7

Coolant temperature : 65 °C PCIM Asia Shang Coolant flow

PCIM Asia Shangira

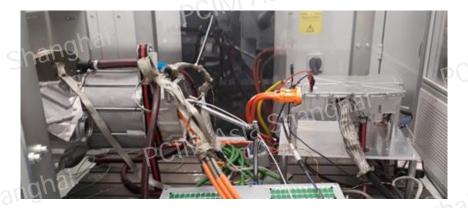
a Shariyi is.

PCIMI Asia Shanghai

HYBRID SWITCHshangha

Test bench measurements

CIM Asia Shangria


Sia Shanghai

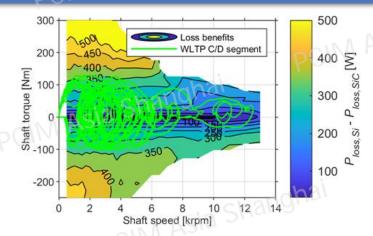
changhai

Motor test bench measurement

Measurement set up

Si IGBT and Si/SiC hybrig(n) test bench

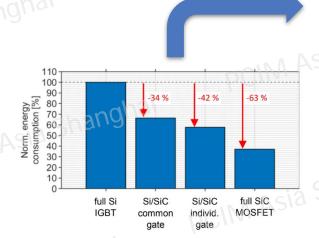
Identical measurement setup, thermal conditions for inverter and motor were maintained to achieve SchM Asia Shangha a fair comparison.

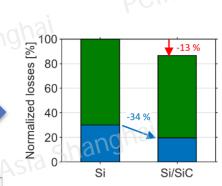


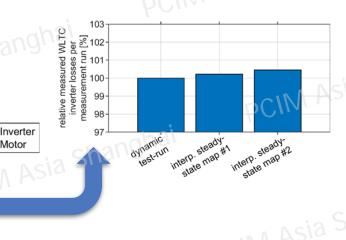
- Constant torque speed maps with defined stator and rotor temperatures were measured
- A multitude of consecutive WLTC cycles were measured with defined thermal starting conditions

Motor test bench measurement

Motor






Measurement results

mulation results

The measurement results show identical loss improvement of 34 % on inverter level

High reproducibility ensures reliable and comparable test results, which is crucial for accurate performance validation.

PCIM Asia Shangi 10

a Snariyi -
PCIM Asia Shanghai

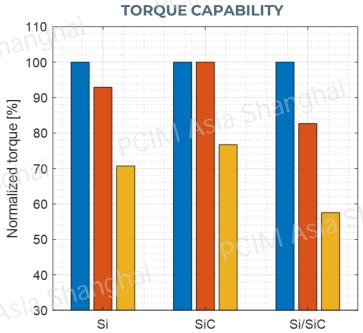
HYBRID SWITCHshangha

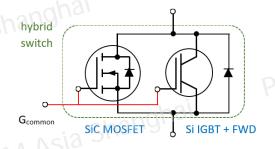
Performance & conclusion

M Asia Shanghai

SCIM Asia Shangria

chandhai


Performance outlook chandhal



Boundary conditions

DC voltage : 470 V
Modulation : SVPWM
Coolant temp.: 65 °C
Coolant flow : 81/min

Operation <i>mode</i>	Performance limited by
Motoring mode	si IGBT / AS
Regenerative mode	Si Diode
Stand still	Si Diode

Increasing the die area to satisfy the application's regenerative torque requirements is a tradeoff between torque capability and efficiency.

Summary

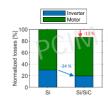
The hybrid switch: from theory to proven performance

HARMONY

Hybrid switch requires most careful selection of dynamic and static characteristics

- Hard parallel operation feasible
- SiC content significantly reducing switching and part-load conduction losses
- Further efficiency gains with individual gate control

PREDICTION


Hybrid switch requires advanced modelling due to complex electrical & thermal interaction

- Side-by-side eDrive test results fully align with predicted improvements
- 34 % reduction in inverter losses confirmed on real-world set-up

IMPACT

Hybrid switch with compelling efficiency boost compared to full Si-IGBT

- Retrofitting offers ½ reduction of eDrive losses
- "In-between solution" compared to full SiC for WLTC efficiency
- Achievable regen braking and standstill performance require special attention

Enriched with hybrid switch technology, VALEO's comprehensive inverter portfolio offers customers an 4plaste cost-performance ratio and future-proof integration.

pcim ASIA SHANGHAI PCIM Asia Shanghai Valeo **SMART TECHNOLOGY** FOR SMARTER MOBILITY